Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Volume 25, issue 3 | Copyright

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 649-658, 2018
https://doi.org/10.5194/npg-25-649-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Sep 2018

Research article | 04 Sep 2018

Climatic responses to systematic time variations of parameters: a dynamical approach

Catherine Nicolis Catherine Nicolis
  • Institut Royal Météorologique de Belgique, 3 av. Circulaire, 1180 Brussels, Belgium

Abstract. The climatic response to time-dependent parameters is revisited from a nonlinear dynamics perspective. Some general trends are identified, based on a generalized stability criterion extending classical stability analysis to account for the presence of time-varying coefficients in the evolution equations of the system's variables. Theoretical predictions are validated by the results of numerical integration of the evolution equations of prototypical systems of relevance in atmospheric and climatic dynamics.

Publications Copernicus
Special issue
Download
Short summary
Ordinarily the climatic impact of systematic variations of parameters arising from anthropogenic effects is addressed on the basis of large numerical models, where parameters are set to a prescribed level and the system is subsequently left to relax. We have revisited the problem from a nonlinear dynamics perspective in which the time variation of parameters is fully incorporated into the evolution laws. Some universal trends of the response have been identified.
Ordinarily the climatic impact of systematic variations of parameters arising from anthropogenic...
Citation
Share