Arnold, L.: Random Dynamical Systems, Springer, Berlin, Germany, 1998. a

Bódai, T. and Tél, T.: Annual variability in a conceptual climate
model: Snapshot attractors, hysteresis in extreme events, and climate
sensitivity, Chaos, 22, 023110, https://doi.org/10.1063/1.3697984, 2012. a, b

Bódai, T., Károlyi, G., and Tél, T.: Driving a conceptual model
climate by different processes: Snapshot attractors and extreme events,
Phys. Rev. E, 87, 022822, https://doi.org/10.1103/PhysRevE.87.022822, 2013. a, b

Boyles, R. and Gardner, W. A.: Cycloergodic properties of discrete-parameter
nonstationary stochastic processes, IEEE T. Inform. Theory, 29, 105–114,
1983. a

Carrassi, A., Ghil, M., Trevisan, A., and Uboldi, F.: Data assimilation as a
nonlinear dynamical systems problem: Stability and convergence of the
prediction-assimilation system, Chaos, 18, 023112, https://doi.org/10.1063/1.2909862,
2008a. a

Carrassi, A., Trevisan, A., Descamps, L., Talagrand, O., and Uboldi, F.:
Controlling instabilities along a 3DVar analysis cycle by assimilating in the
unstable subspace: a comparison with the EnKF, Nonlin. Processes Geophys.,
15, 503–521, https://doi.org/10.5194/npg-15-503-2008, 2008b. a

Carvalho, A., Langa, J. A., and Robinson, J.: Attractors for
Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York,
USA, 2012. a, b

Celletti, A.: Periodic and quasi-periodic attractors of weakly-dissipative
nearly-integrable systems, Regul. Chaotic Dyn., 14, 49–63, 2009. a

Chekroun, M. D., Simonnet, E., and Ghil, M.: Stochastic climate dynamics:
Random attractors and time-dependent invariant measures, Physica D, 240,
1685–1700, 2011. a, b, c, d

Chekroun, M. D., Ghil, M., and Neelin, J. D.: Pullback attractor crisis in a
delay differential ENSO model, in: Advances in Nonlinear Geosciences,
edited by: Tsonis, A., 1–33, Springer, available at:
https://link.springer.com/chapter/10.1007/978-3-319-58895-7_1, last
access: 7 September 2018. a, b, c, d, e, f

De Cruz, L., Schubert, S., Demaeyer, J., Lucarini, V., and Vannitsem, S.:
Exploring the Lyapunov instability properties of high-dimensional atmospheric
and climate models, Nonlin. Processes Geophys., 25, 387–412,
https://doi.org/10.5194/npg-25-387-2018, 2018. a

Drótos, G., Bódai, T., and Tél, T.: Probabilistic concepts in a
changing climate: A snapshot attractor picture, J. Climate, 28, 3275–3288,
2015. a, b

Drótos, G., Bódai, T., and Tél, T.: On the importance of the
convergence to climate attractors, Eur. Phys. J.-Spec. Top., 226,
2031–2038, 2017. a

Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., and
Prasad, A.: Hidden attractors in dynamical systems, Phys. Rep., 637,
1–50, 2016. a, b, c, d

Duffing, G.: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und
ihre technische Bedeutung, vol. 41/42 of Sammlung Vieweg, R. Vieweg & Sohn,
Braunschweig, Germany, 1918. a

Eckmann, J.-P. and Ruelle, D.: Ergodic theory of chaos and strange attractors,
Rev. Modern Phys., 57, 617–656, 1985. a, b

Feudel, U., Grebogi, C., Hunt, B. R., and Yorke, J. A.: Map with more than
100 coexisting low-period periodic attractors, Phys. Rev. E, 54, 71,
https://doi.org/10.1103/PhysRevE.54.71, 1996. a

Ghil, M.: Cryothermodynamics: the chaotic dynamics of paleoclimate, Physica D,
77, 130–159, 1994. a

Ghil, M.: A mathematical theory of climate sensitivity or, How to deal with
both anthropogenic forcing and natural variability?, in: Climate Change:
Multidecadal and Beyond, edited by: Chang, C. P., Ghil, M., M., L., and
Wallace, J. M., 31–51, World Scientific Publ. Co./Imperial College
Press, Singapore, 2015. a

Ghil, M.: The wind-driven ocean circulation: Applying dynamical systems
theory to a climate problem, Discrete Cont. Dyn.-A, 37, 189–228, 2017. a, b

Ghil, M. and Wolansky, G.: Non-Hamiltonian perturbations of integrable systems
and resonance trapping, SIAM J. Appl. Math., 52, 1148–1171,
1992. a

Ghil, M., Chekroun, M. D., and Simonnet, E.: Climate dynamics and fluid
mechanics: Natural variability and related uncertainties, Physica D, 237,
2111–2126, 2008. a, b

Grebogi, C., Ott, E., and Yorke, J. A.: Chaos, strange attractors, and fractal
basin boundaries in nonlinear dynamics, Science, 238, 632–638, 1987. a

Hilborn, R. C.: Chaos and Nonlinear Dynamics, Oxford University Press,
Oxford, UK, 2000. a

Jackson, E. A.: Perspectives of Nonlinear Dynamics, Cambridge University
Press, New York, USA, 1991. a, b

Jiang, S., Jin, F.-F., and Ghil, M.: Multiple equilibria, periodic, and
aperiodic solutions in a wind-driven, double-gyre, shallow-water model, J.
Phys. Oceanogr., 25, 764–786, 1995. a

Kloeden, P. E. and Rasmussen, M.: Nonautonomous Dynamical Systems, 176,
Amer. Math. Soc., 2011. a, b

Kozlov, A., Sushchik, M., Molkov, Y., and Kuznetsov, A.: Bistable phase
synchronization and chaos in system of coupled Van der Pol-Duffing
oscillators, Int. J. Bifurcat. Chaos, 9, 2271–2277, 1999. a

Kuznetsov, A., Stankevich, N., and Turukina, L.: Coupled van der Pol–Duffing
oscillators: Phase dynamics and structure of synchronization tongues,
Physica D, 238, 1203–1215, 2009. a

Le Treut, H. and Ghil, M.: Orbital forcing, climatic interactions, and
glaciation cycles, J. Geophys. Res., 88, 5167–5190,
https://doi.org/10.1029/JC088iC09p05167, 1983. a

Lucarini, V., Ragone, F., and Lunkeit, F.: Predicting climate change using
response theory: Global averages and spatial patterns, J. Stat. Phys., 166,
1036–1064, 2017. a

Manneville, P. and Pomeau, Y.: Intermittency and the Lorenz model, Phys. Lett.
A, 75, 1–2, 1979. a

Nicolis, G.: Introduction to Nonlinear Science, Cambridge University Press,
Cambridge, UK, 1995. a

Ott, E.: Chaos in Dynamical Systems, Cambridge University Press, Cambridge,
UK, 2002. a, b

Pierini, S.: A Kuroshio Extension system model study: Decadal chaotic
self-sustained oscillations, J. Phys. Oceanogr., 36, 1605–1625, 2006. a, b

Pierini, S.: Low-frequency variability, coherence resonance, and phase
selection in a low-order model of the wind-driven ocean circulation, J.
Phys. Oceanogr., 41, 1585–1604, 2011. a, b, c, d, e, f, g, h, i

Pierini, S.: Stochastic tipping points in climate dynamics, Phys. Rev. E,
85, 027101, https://doi.org/10.1103/PhysRevE.85.027101, 2012. a

Pierini, S.: Ensemble simulations and pullback attractors of a periodically
forced double-gyre system, J. Phys. Oceanogr., 44, 3245–3254, 2014. a, b, c, d, e, f, g, h, i, j

Pierini, S. and Dijkstra, H. A.: Low-frequency variability of the Kuroshio
Extension, Nonlin. Processes Geophys., 16, 665–675,
https://doi.org/10.5194/npg-16-665-2009, 2009. a

Pierini, S., Dijkstra, H. A., and Riccio, A.: A nonlinear theory of the
Kuroshio Extension bimodality, J. Phys. Oceanogr., 39, 2212–2229, 2009.
a

Pierini, S., Ghil, M., and Chekroun, M. D.: Exploring the pullback attractors
of a low-order quasigeostrophic ocean model: the deterministic case, J.
Climate, 29, 4185–4202, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y

Pisarchik, A. N. and Feudel, U.: Control of multistability, Phys. Rep.,
540, 167–218, 2014. a

Pomeau, Y. and Manneville, P.: Intermittent transition to turbulence in
dissipative dynamical systems, Commun. Math. Phys., 74, 189–197, 1980. a

Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical
Systems, Springer, Berlin, Germany, 2007. a

Romeiras, F. J., Grebogi, C., and Ott, E.: Multifractal properties of
snapshot attractors of random maps, Phys. Rev. A, 41, 784,
https://doi.org/10.1103/PhysRevA.41.784, 1990. a

Roques, L. and Chekroun, M. D.: Probing chaos and biodiversity in a simple
competition model, Ecol. Complex., 8, 98–104, 2011. a

Shannon, C. E.: The mathematical theory of communication, Bell Syst. Tech. J.,
27, 379–423, 1948. a

Strogatz, S. H.: Nonlinear Dynamics and Chaos: with Applications to Physics,
Biology, Chemistry, and Engineering, CRC Press, Boca Raton, FL, USA, 2015. a, b

Sushama, L., Ghil, M., and Ide, K.: Spatio-temporal variability in a
mid-latitude ocean basin subject to periodic wind forcing, Atmos. Ocean,
45, 227–250, https://doi.org/10.3137/ao.450404, 2007. a

Tél, T. and Gruiz, M.: Chaotic Dynamics, Cambridge University Press,
Cambridge, UK, 2006. a

Trevisan, A. and Palatella, L.: On the Kalman Filter error covariance
collapse into the unstable subspace, Nonlin. Processes Geophys., 18,
243–250, https://doi.org/10.5194/npg-18-243-2011, 2011. a

Trevisan, A. and Uboldi, F.: Assimilation of standard and targeted
observations within the unstable subspace of the
observation-analysis-forecast cycle system, J. Atmos. Sci., 61, 103–113,
https://doi.org/10.1175/1520-0469(2004)061<0103:AOSATO>2.0.CO;2, 2004. a

Van der Pol, B.: A theory of the amplitude of free and forced triode
vibrations, Radio Rev., 1, 701–710, 1920. a, b

Van der Pol, B.: On relaxation-oscillations, The London, Edinburgh and Dublin
Phil. Mag. J. Sci., 2, 978–992, 1926. a

Vannitsem, S.: Stochastic modelling and predictability: analysis of a
low-order coupled ocean–atmosphere model, Philos. T. Roy. Soc. A, 372,
20130282, https://doi.org/10.1098/rsta.2013.0282, 2014. a

Vannitsem, S. and De Cruz, L.: A 24-variable low-order coupled
ocean–atmosphere model: OA-QG-WS v2, Geosci. Model Dev., 7, 649–662,
https://doi.org/10.5194/gmd-7-649-2014, 2014. a

Venkatesan, A. and Lakshmanan, M.: Bifurcation and chaos in the double-well
Duffing–Van der Pol oscillator: Numerical and analytical studies, Phys.
Rev. E, 56, 6321, https://doi.org/10.1103/PhysRevE.56.6321, 1997. a

Zaslavsky, G. M. and Edelman, M.: Superdiffusion in the dissipative standard
map, Chaos, 18, 033116, https://doi.org/10.1063/1.2967851, 2008. a