Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
NPG | Articles | Volume 25, issue 4
Nonlin. Processes Geophys., 25, 765-807, 2018
https://doi.org/10.5194/npg-25-765-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 765-807, 2018
https://doi.org/10.5194/npg-25-765-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article 12 Nov 2018

Review article | 12 Nov 2018

Review article: Comparison of local particle filters and new implementations

Alban Farchi and Marc Bocquet
Related authors  
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model
Julien Brajard, Alberto Carrassi, Marc Bocquet, and Laurent Bertino
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-136,https://doi.org/10.5194/gmd-2019-136, 2019
Manuscript under review for GMD
Short summary
Calibration of a multi-physics ensemble for estimating the uncertainty of a greenhouse gas atmospheric transport model
Liza I. Díaz-Isaac, Thomas Lauvaux, Marc Bocquet, and Kenneth J. Davis
Atmos. Chem. Phys., 19, 5695-5718, https://doi.org/10.5194/acp-19-5695-2019,https://doi.org/10.5194/acp-19-5695-2019, 2019
Short summary
Data assimilation as a deep learning tool to infer ODE representations of dynamical models
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-7,https://doi.org/10.5194/npg-2019-7, 2019
Revised manuscript accepted for NPG
Short summary
Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport
Thomas Lauvaux, Liza I. Díaz-Isaac, Marc Bocquet, and Nicolas Bousserez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1113,https://doi.org/10.5194/acp-2018-1113, 2019
Manuscript under review for ACP
Short summary
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys., 25, 633-648, https://doi.org/10.5194/npg-25-633-2018,https://doi.org/10.5194/npg-25-633-2018, 2018
Short summary
Related subject area  
Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions
Andrey A. Popov and Adrian Sandu
Nonlin. Processes Geophys., 26, 109-122, https://doi.org/10.5194/npg-26-109-2019,https://doi.org/10.5194/npg-26-109-2019, 2019
Short summary
Data assimilation as a deep learning tool to infer ODE representations of dynamical models
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-7,https://doi.org/10.5194/npg-2019-7, 2019
Revised manuscript accepted for NPG
Short summary
Exploring the sensitivity of Northern Hemisphere atmospheric circulation to different surface temperature forcing using a statistical–dynamical atmospheric model
Sonja Totz, Stefan Petri, Jascha Lehmann, Erik Peukert, and Dim Coumou
Nonlin. Processes Geophys., 26, 1-12, https://doi.org/10.5194/npg-26-1-2019,https://doi.org/10.5194/npg-26-1-2019, 2019
Data assimilation of radar reflectivity volumes in a LETKF scheme
Thomas Gastaldo, Virginia Poli, Chiara Marsigli, Pier Paolo Alberoni, and Tiziana Paccagnella
Nonlin. Processes Geophys., 25, 747-764, https://doi.org/10.5194/npg-25-747-2018,https://doi.org/10.5194/npg-25-747-2018, 2018
Short summary
Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling
Sangeetika Ruchi and Svetlana Dubinkina
Nonlin. Processes Geophys., 25, 731-746, https://doi.org/10.5194/npg-25-731-2018,https://doi.org/10.5194/npg-25-731-2018, 2018
Short summary
Cited articles  
Acevedo, W., de Wiljes, J., and Reich, S.: Second-order accurate ensemble transform particle filters, SIAM J. Sci. Comput., 39, A1834–A1850, https://doi.org/10.1137/16M1095184, 2017. a
Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503, https://doi.org/10.1002/qj.2370, 2015. a, b, c
Anderson, J. L.: A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a
Apte, A. and Jones, C. K. R. T.: The impact of nonlinearity in Lagrangian data assimilation, Nonlin. Processes Geophys., 20, 329–341, https://doi.org/10.5194/npg-20-329-2013, 2013. a
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear non-Gaussian Bayesian Tracking, IEEE T. Signal Proces., 50, 174–188, https://doi.org/10.1109/78.978374, 2002. a
Publications Copernicus
Download
Short summary
Data assimilation looks for an optimal way to learn from observations of a dynamical system to improve the quality of its predictions. The goal is to filter out the noise (both observation and model noise) to retrieve the true signal. Among all possible methods, particle filters are promising; the method is fast and elegant, and it allows for a Bayesian analysis. In this review paper, we discuss implementation techniques for (local) particle filters in high-dimensional systems.
Data assimilation looks for an optimal way to learn from observations of a dynamical system to...
Citation