Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.129 IF 1.129
  • IF 5-year value: 1.519 IF 5-year 1.519
  • CiteScore value: 1.54 CiteScore 1.54
  • SNIP value: 0.798 SNIP 0.798
  • SJR value: 0.610 SJR 0.610
  • IPP value: 1.41 IPP 1.41
  • h5-index value: 21 h5-index 21
  • Scimago H index value: 48 Scimago H index 48
Volume 25, issue 4
Nonlin. Processes Geophys., 25, 765-807, 2018
https://doi.org/10.5194/npg-25-765-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 765-807, 2018
https://doi.org/10.5194/npg-25-765-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article 12 Nov 2018

Review article | 12 Nov 2018

Review article: Comparison of local particle filters and new implementations

Alban Farchi and Marc Bocquet
Related authors  
Calibration of a multi-physics ensemble for greenhouse gas atmospheric transport model uncertainty estimation
Liza I. Díaz-Isaac, Thomas Lauvaux, Marc Bocquet, and Kenneth J. Davis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1117,https://doi.org/10.5194/acp-2018-1117, 2018
Manuscript under review for ACP
Short summary
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys., 25, 633-648, https://doi.org/10.5194/npg-25-633-2018,https://doi.org/10.5194/npg-25-633-2018, 2018
Short summary
Parametric covariance dynamics for the nonlinear diffusive Burgers equation
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481-495, https://doi.org/10.5194/npg-25-481-2018,https://doi.org/10.5194/npg-25-481-2018, 2018
Short summary
Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother
Anthony Fillion, Marc Bocquet, and Serge Gratton
Nonlin. Processes Geophys., 25, 315-334, https://doi.org/10.5194/npg-25-315-2018,https://doi.org/10.5194/npg-25-315-2018, 2018
Short summary
A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0)
J.-M. Haussaire and M. Bocquet
Geosci. Model Dev., 9, 393-412, https://doi.org/10.5194/gmd-9-393-2016,https://doi.org/10.5194/gmd-9-393-2016, 2016
Short summary
Related subject area  
Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Data assimilation of radar reflectivity volumes in a LETKF scheme
Thomas Gastaldo, Virginia Poli, Chiara Marsigli, Pier Paolo Alberoni, and Tiziana Paccagnella
Nonlin. Processes Geophys., 25, 747-764, https://doi.org/10.5194/npg-25-747-2018,https://doi.org/10.5194/npg-25-747-2018, 2018
Short summary
Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling
Sangeetika Ruchi and Svetlana Dubinkina
Nonlin. Processes Geophys., 25, 731-746, https://doi.org/10.5194/npg-25-731-2018,https://doi.org/10.5194/npg-25-731-2018, 2018
Short summary
Nonlinear effects in 4D-Var
Massimo Bonavita, Peter Lean, and Elias Holm
Nonlin. Processes Geophys., 25, 713-729, https://doi.org/10.5194/npg-25-713-2018,https://doi.org/10.5194/npg-25-713-2018, 2018
Short summary
A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations
Linlin Zhang, Bin Mu, Shijin Yuan, and Feifan Zhou
Nonlin. Processes Geophys., 25, 693-712, https://doi.org/10.5194/npg-25-693-2018,https://doi.org/10.5194/npg-25-693-2018, 2018
Short summary
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys., 25, 633-648, https://doi.org/10.5194/npg-25-633-2018,https://doi.org/10.5194/npg-25-633-2018, 2018
Short summary
Cited articles  
Acevedo, W., de Wiljes, J., and Reich, S.: Second-order accurate ensemble transform particle filters, SIAM J. Sci. Comput., 39, A1834–A1850, https://doi.org/10.1137/16M1095184, 2017.
Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503, https://doi.org/10.1002/qj.2370, 2015.
Anderson, J. L.: A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996.
Apte, A. and Jones, C. K. R. T.: The impact of nonlinearity in Lagrangian data assimilation, Nonlin. Processes Geophys., 20, 329–341, https://doi.org/10.5194/npg-20-329-2013, 2013.
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear non-Gaussian Bayesian Tracking, IEEE T. Signal Proces., 50, 174–188, https://doi.org/10.1109/78.978374, 2002.
Publications Copernicus
Special issue
Download
Short summary
Data assimilation looks for an optimal way to learn from observations of a dynamical system to improve the quality of its predictions. The goal is to filter out the noise (both observation and model noise) to retrieve the true signal. Among all possible methods, particle filters are promising; the method is fast and elegant, and it allows for a Bayesian analysis. In this review paper, we discuss implementation techniques for (local) particle filters in high-dimensional systems.
Data assimilation looks for an optimal way to learn from observations of a dynamical system to...
Citation
Share