Acevedo, W., de Wiljes, J., and Reich, S.: Second-order accurate ensemble
transform particle filters, SIAM J. Sci. Comput., 39, A1834–A1850,
https://doi.org/10.1137/16M1095184, 2017. a

Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter
in
a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503,
https://doi.org/10.1002/qj.2370, 2015. a, b, c

Anderson, J. L.: A Method for Producing and Evaluating Probabilistic
Forecasts
from Ensemble Model Integrations, J. Climate, 9, 1518–1530,
https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a

Apte, A. and Jones, C. K. R. T.: The impact of nonlinearity in Lagrangian
data assimilation, Nonlin. Processes Geophys., 20, 329–341,
https://doi.org/10.5194/npg-20-329-2013, 2013. a

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on
particle filters for online nonlinear non-Gaussian Bayesian Tracking,
IEEE T. Signal Proces., 50, 174–188, https://doi.org/10.1109/78.978374, 2002. a

Bengtsson, T., Snyder, C., and Nychka, D.: Toward a nonlinear ensemble filter
for high-dimensional systems, J. Geophys. Res., 108, 8775,
https://doi.org/10.1029/2002JD002900, 2003. a

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with
the
Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather
Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2,
2001. a

Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy.
Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014. a

Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian statistical modeling
in geophysical data assimilation, Mon. Weather Rev., 138, 2997–3023,
https://doi.org/10.1175/2010MWR3164.1, 2010. a, b, c, d, e, f

Bocquet, M., Raanes, P. N., and Hannart, A.: Expanding the validity of the
ensemble Kalman filter without the intrinsic need for inflation, Nonlin.
Processes Geophys., 22, 645–662, https://doi.org/10.5194/npg-22-645-2015,
2015. a

Browne, P. A.: A comparison of the equivalent weights particle filter and the
local ensemble transform Kalman filter in application to the barotropic
vorticity equation, Tellus A, 68, 30466, https://doi.org/10.3402/tellusa.v68.30466,
2016. a, b

Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and
beyond, Statistics, 182, 1–69, https://doi.org/10.1080/02331880309257, 2003. a

Cheng, Y. and Reich, S.: Assimilating data into scientific models: An optimal
coupling perspective, in: Nonlinear Data Assimilation, vol. 2 of
Frontiers in Applied Dynamical Systems: Reviews and Tutorials,
75–118, Springer International Publishing, https://doi.org/10.1007/978-3-319-18347-3,
2015. a, b

Chorin, A. J. and Tu, X.: Implicit sampling for particle filters, P. Natl.
Acad. Sci. USA, 106, 17249–17254, https://doi.org/10.1073/pnas.0909196106, 2009. a, b

Chorin, A. J., Morzfeld, M., and Tu, X.: Implicit particle filters for data
assimilation, Comm. App. Math. Com. Sc., 5, 221–240,
https://doi.org/10.2140/camcos.2010.5.221, 2010. a, b

Chustagulprom, N., Reich, S., and Reinhardt, M.: A Hybrid Ensemble Transform
Particle Filter for Nonlinear and Spatially Extended Dynamical Systems,
SIAM/ASA Journal on Uncertainty Quantification, 4, 592–608,
https://doi.org/10.1137/15M1040967, 2016. a, b, c, d

Crisan, D. and Doucet, A.: A survey of convergence results on particle
filtering methods for practitioners, IEEE T. Signal Proces., 50, 736–746,
https://doi.org/10.1109/78.984773, 2002. a, b

Dezső, B., Jüttner, A., and Kovács, P.: LEMON – an Open Source
C++ Graph Template Library, Electronic Notes in Theoretical Computer Science,
264, 23–45, https://doi.org/10.1016/j.entcs.2011.06.003, 2011. a

Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo
sampling methods for Bayesian filtering, Stat. Comput., 10, 197–208,
https://doi.org/10.1023/A:1008935410038, 2000. a, b, c, d, e

Doucet, A., de Freitas, N., and Gordon, N. (Eds.): Sequential Monte Carlo
Methods in Practice, Springer-Verlag New York Inc.,
https://doi.org/10.1007/978-1-4757-3437-9, 2001. a

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. a

Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. a, b

Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and
three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757,
https://doi.org/10.1002/qj.49712555417, 1999. a

Gordon, N. J., Salmond, D. J., and Smith, A. F. M.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. F, 140,
107–113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993. a, b, c

Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B. R.: Balance
and
Ensemble Kalman Filter Localization Techniques, Mon. Weather Rev., 139,
511–522, https://doi.org/10.1175/2010MWR3328.1, 2011. a

Hamill, T. M.: Interpretation of Rank Histograms for Verifying Ensemble
Forecasts, Mon. Weather Rev., 129, 550–560,
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2, 2001. a

Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering
of
Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon.
Weather Rev., 129, 2776–2790,
https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2, 2001. a, b

Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble Kalman Filter
for Atmospheric Data Assimilation, Mon. Weather Rev., 129, 123–137,
https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2, 2001. a, b

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M.,
Spacek, L., and Hansen, B.: Atmospheric data assimilation with an ensemble
Kalman filter: Results with real observations, Mon. Weather Rev., 133,
604–620, https://doi.org/10.1175/MWR-2864.1, 2005. a

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation
for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica
D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007. a, b

Kalnay, E. and Yang, S.-C.: Accelerating the spin-up of Ensemble Kalman
Filtering, Q. J. Roy. Meteor. Soc., 136, 1644–1651, https://doi.org/10.1002/qj.652,
2010. a

Kong, A., Liu, J. S., and Wong, W. H.: Sequential Imputations and Bayesian
Missing Data Problems, J. Am. Stat. Assoc., 89, 278–288,
https://doi.org/10.1080/01621459.1994.10476469, 1994. a, b

Lee, Y. and Majda, A. J.: State estimation and prediction using clustered
particle filters, P. Natl. Acad. Sci. USA, 113, 14609–14614,
https://doi.org/10.1073/pnas.1617398113, 2016. a, b, c, d

Le Gland, F., Musso, C., and Oudjane, N.: An Analysis of Regularized
Interacting Particle Methods for Nonlinear Filtering, in: Proceedings of the
3rd IEEE European Workshop on Computer-Intensive Methods in Control and
Signal Processing, 7–9 September 1998, Prague, Czech Republic, 167–174,
1998. a

Lorenz, E. N. and Emanuel, K. A.: Optimal Sites for Supplementary Weather
Observations: Simulation with a Small Model, J. Atmos. Sci., 55, 399–414,
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2, 1998. a, b

MacKay, D. J. C.: Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, New York, USA, 2003. a, b

Metref, S., Cosme, E., Snyder, C., and Brasseur, P.: A non-Gaussian analysis
scheme using rank histograms for ensemble data assimilation, Nonlin.
Processes Geophys., 21, 869–885, https://doi.org/10.5194/npg-21-869-2014,
2014. a

Morzfeld, M., Tu, X., Atkins, E., and Chorin, A. J.: A random map
implementation of implicit filters, J. Comput. Phys., 231, 2049–2066,
https://doi.org/10.1016/j.jcp.2011.11.022, 2012. a, b

Musso, C. and Oudjane, N.: Regularization schemes for branching particle
systems as a numerical solving method of the nonlinear filtering problem, in:
Proceedings of the Irish Signals and Systems Conference, 25–26 June 1998,
Dublin, Ireland, 1998. a

Musso, C., Oudjane, N., and Le Gland, F.: Improving Regularised Particle
Filters, in: Sequential Monte Carlo Methods in Practice, edited by:
Doucet, A., de Freitas, N., and Gordon, N., 247–271, Springer-Verlag New
York Inc., https://doi.org/10.1007/978-1-4757-3437-9_12, 2001. a, b, c, d

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,
M., Kalnay, E., Patil, D. J., and Yorke, J. A.: A local ensemble Kalman
filter for atmospheric data assimilation, Tellus A, 56, 415–428,
https://doi.org/10.1111/j.1600-0870.2004.00076.x, 2004. a, b

Oudjane, N. and Musso, C.: Multiple model particle filter, in: Actes du
dix-septième colloque GRETSI, 13–17 September 1999, Vannes, France,
681–684, 1999. a

Pele, O. and Werman, M.: Fast and robust Earth Mover's Distances, in: 2009
IEEE 12th International Conference on Computer Vision,
29 September–2 October 2009, Kyoto, Japan, 460–467, IEEE,
https://doi.org/10.1109/ICCV.2009.5459199, 2009. a

Penny, S. G. and Miyoshi, T.: A local particle filter for high-dimensional
geophysical systems, Nonlin. Processes Geophys., 23, 391–405,
https://doi.org/10.5194/npg-23-391-2016, 2016. a, b, c, d, e, f, g, h, i, j, k

Pham, D. T.: Stochastic Methods for Sequential Data Assimilation in Strongly
Nonlinear Systems, Mon. Weather Rev., 129, 1194–1207,
https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001. a

Poterjoy, J.: A Localized Particle Filter for High-Dimensional Nonlinear
Systems, Mon. Weather Rev., 144, 59–76, https://doi.org/10.1175/MWR-D-15-0163.1, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r

Rebeschini, P. and van Handel, R.: Can local particle filters beat the
curse
of dimensionality?, Ann. Appl. Probab., 25, 2809–2866,
https://doi.org/10.1214/14-AAP1061, 2015. a, b, c, d, e, f, g, h, i

Reich, S.: A nonparametric ensemble transform method for Bayesian
inference,
SIAM J. Sci. Comput., 35, A2013–A2014, https://doi.org/10.1137/130907367, 2013. a, b, c, d, e, f

Reich, S. and Cotter, C.: Probabilistic Forecasting and Bayesian Data
Assimilation, Cambridge University Press, https://doi.org/10.1017/CBO9781107706804,
2015. a

Robert, S. and Künsch, H. R.: Localizing the Ensemble Kalman Particle
Filter, Tellus A, 69, 1282016, https://doi.org/10.1080/16000870.2017.1282016, 2017. a, b, c, d, e, f, g, h, i

Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and
Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the North
Atlantic and Arctic, Ocean Sci., 8, 633–656,
https://doi.org/10.5194/os-8-633-2012, 2012a. a

Sakov, P., Oliver, D. S., and Bertino, L.: An Iterative EnKF for Strongly
Nonlinear Systems, Mon. Weather Rev., 140, 1988–2004,
https://doi.org/10.1175/MWR-D-11-00176.1, 2012b. a

Silverman, B. W.: Density Estimation for Statistics and Data Analysis,
vol. 26
of Monographs on Statistics & Applied Probability, Chapman & Hall,
London, UK, 1986. a, b

Slivinski, L., Spiller, E., Apte, A., and Sandstede, B.: A Hybrid
Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation, Mon.
Weather Rev., 143, 195–211, https://doi.org/10.1175/MWR-D-14-00051.1, 2015. a

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. L.: Obstacles to
High-Dimensional Particle Filtering, Mon. Weather Rev., 136, 4629–4640,
https://doi.org/10.1175/2008MWR2529.1, 2008. a, b, c, d, e, f, g

Snyder, C., Bengtsson, T., and Morzfeld, M.: Performance Bounds for Particle
Filters Using the Optimal Proposal, Mon. Weather Rev., 143, 4750–4761,
https://doi.org/10.1175/MWR-D-15-0144.1, 2015. a, b, c, d, e

van Leeuwen, P. J.: A Variance-Minimizing Filter for Large-Scale
Applications, Mon. Weather Rev., 131, 2071–2084,
https://doi.org/10.1175/1520-0493(2003)131<2071:AVFFLA>2.0.CO;2, 2003. a

van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon.
Weather
Rev., 137, 4089–4114, https://doi.org/10.1175/2009MWR2835.1, 2009. a, b, c, d, e, f, g, h, i

van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: an
extremely efficient particle filter, Q. J. Roy. Meteor. Soc., 136,
1991–1999, https://doi.org/10.1002/qj.699, 2010. a, b

van Leeuwen, P. J. and Ades, M.: Efficient fully nonlinear data
assimilation for geophysical fluid dynamics, Comput. Geosci., 55,
16–27, https://doi.org/10.1016/j.cageo.2012.04.015, 2013. a

Villani, C.: Optimal Transport, Old and New, vol. 338 of Grundlehren der
mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg, Germany, 2009.
a, b

Zhou, Y., McLaughlin, D., and Entekhabi, D.: Assessing the Performance of the
Ensemble Kalman Filter for Land Surface Data Assimilation, Mon. Weather
Rev., 134, 2128–2142, https://doi.org/10.1175/MWR3153.1, 2006. a

Zhu, M., van Leeuwen, P. J., and Amezcua, J.: Implicit equal-weights
particle filter, Q. J. Roy. Meteor. Soc., 142, 1904–1919,
https://doi.org/10.1002/qj.2784, 2016. a

Zupanski, M.: Maximum Likelihood Ensemble Filter: Theoretical Aspects, Mon.
Weather Rev., 133, 1710–1726, https://doi.org/10.1175/MWR2946.1, 2005. a