Alharbi, A. and Naire, S.: An adaptive moving mesh method for thin film flow
equations with surface tension, J. Comput. Appl. Math., 319, 365–384, https://doi.org/10.1016/j.cam.2017.01.019, 2017. a

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758, 1999. a

Apte, A. and Jones, C. K. R. T.: The impact of nonlinearity in Lagrangian data assimilation, Nonlin. Processes Geophys., 20, 329–341, https://doi.org/10.5194/npg-20-329-2013, 2013. a

Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation: Methods,
Algorithms, and Applications, Fundamentals of Algorithms, SIAM,
Philadelphia, ISBN 978-1-611974-53-9, 2016. a

Babus̆ka, I. and Aziz, A.: On the Angle Condition in the Finite Element
Method, SIAM J. Numer. Anal., 13, 214–226,
https://doi.org/10.1137/0713021, 1976. a

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: Velocity-Based Moving Mesh
Methods for Nonlinear Partial Differential Equations, Commun. Comput. Phys., 10, 509–576, https://doi.org/10.4208/cicp.201010.040511a, 2011. a, b

Berger, M. J. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys., 53, 484–512,
https://doi.org/10.1016/0021-9991(84)90073-1, 1984. a

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with
the ensemble transform Kalman filter. Part I: Theoretical aspects, Mon.
Weather Rev., 129, 420–436, 2001. a

Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data
assimilation and the unstable subspace, Tellus A, 69, 1304504,
https://doi.org/10.1080/16000870.2017.1304504, 2017. a

Bonan, B., Nichols, N. K., Baines, M. J., and Partridge, D.: Data assimilation for moving mesh methods with an application to ice sheet modelling, Nonlin. Processes Geophys., 24, 515–534, https://doi.org/10.5194/npg-24-515-2017, 2017. a, b, c

Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a
new sea ice model, Ocean Model., 91, 23–37,
https://doi.org/10.1016/j.ocemod.2015.04.005, 2015. a

Bouillon, S., Rampal, P., and Olason, E.: Sea Ice Modelling and Forecasting,
in: New Frontiers in Operational Oceanography, edited by: Chassignet, E. P.,
Pascual, A., Tintoré, J., and Verron, J., 15, 423–444,
GODAE OceanView, https://doi.org/10.17125/gov2018, 2018. a

Budhiraja, A., Friedlander, E., Guider, C., Jones, C., and Maclean, J.: Assimilating data into models, in: Handbook of Environmental and Ecological Statistics, edited by: Gelfand, A. E., Fuentes, M., Hoeting, J. A., and Smith, R. L., ISBN 9781498752022, CRC Press, 2018. a

Burgers, G., Jan van Leeuwen, P., and Evensen, G.: Analysis scheme in the
ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998. a, b

Burgers, J.: A Mathematical Model Illustrating the Theory of Turbulence, vol. 1
of Advances in Applied Mechanics, 171–199, Elsevier,
https://doi.org/10.1016/S0065-2156(08)70100-5, 1948. a, b

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, Wiley
Interdisciplinary Reviews: Climate Change, 9, e535, https://doi.org/10.1002/wcc.535,
2018. a, b, c, d

Cohn, S. E.: Dynamics of short-term univariate forecast error covariances,
Mon. Weather Rev., 121, 3123–3149, 1993. a

Compère, G., Remacle, J. F., and Marchandise, E.: Transient Mesh Adaptivity
with Large Rigid-Body Displacements, in: Proceedings of the 17th
International Meshing Roundtable, edited by: Garimella, R., 213–230,
Springer, Berlin, 2008. a

Compère, G., Remacle, J.-F., Jansson, J., and Hoffman, J.: A mesh
adaptation framework for dealing with large deforming meshes, Int. J. Numer.
Meth. Engng., 82, 843–867, https://doi.org/10.1002/nme.2788, 2009. a

Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016. a

Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: A fully unstructured
anisotropic adaptive mesh computational modeling framework for geodynamics,
Geochem. Geophy. Geosy., 12,
6, https://doi.org/10.1029/2011GC003551, 2011. a, b

Du, J., Zhu, J., Fang, F., Pain, C., and Navon, I.: Ensemble data assimilation
applied to an adaptive mesh ocean model, Int. J. Numer. Meth. Fl., 82, 997–1009, https://doi.org/10.1002/fld.4247, 2016. a, b, c, d

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J.
Geophys. Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572,
1994. a

Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. a, b

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter,
Springer-Verlag/Berlin/Heildelberg, second edn., ISBN 978-3-642-03711-5,
2009. a, b, c

Fang, F., Piggott, M., Pain, C., Gorman, G., and Goddard, A.: An adaptive mesh
adjoint data assimilation method, Ocean Model., 15, 39–55,
https://doi.org/10.1016/j.ocemod.2006.02.002,
2006. a

Farrell, P., Piggott, M., Pain, C., Gorman, G., and Wilson, C.: Conservative
interpolation between unstructured meshes via supermesh construction,
Comput. Meth. Appl. Mech. Eng., 198, 2632–2642,
https://doi.org/10.1016/j.cma.2009.03.004, 2009. a

Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for
Atmospheric Data Assimilation, Mon. Weather Rev., 144, 4489–4532,
https://doi.org/10.1175/MWR-D-15-0440.1, 2016. a, b

Huang, W. and Russell, R. D.: Adaptive moving mesh methods, vol. 174, Springer
Science & Business Media, ISBN 978-1-4419-7916-2, 2010. a, b, c, d, e

Huang, W., Zheng, L., and Zhan, X.: Adaptive moving mesh methods for simulating
one-dimensional groundwater problems with sharp moving fronts, International
J. Numer. Meth. Eng., 54, 1579–1603,
https://doi.org/10.1002/nme.482, 2002. a

Jain, P. K., Mandli, K., Hoteit, I., Knio, O., and Dawson, C.: Dynamically
adaptive data-driven simulation of extreme hydrological flows, Ocean Model., 122, 85–103, https://doi.org/10.1016/j.ocemod.2017.12.004, 2018. a

Kalman, R. E.: A new approach to linear filtering and prediction problems, J.
Fluid. Eng., 82, 35–45, 1960. a

Kuznetsov, L., Ide, K., and Jones, C.: A method for assimilation of Lagrangian
data, Mon. Weather Rev., 131, 2247–2260, 2003. a

Maddison, J., Marshall, D., Pain, C., and Piggott, M.: Accurate representation
of geostrophic and hydrostatic balance in unstructured mesh finite element
ocean modelling, Ocean Model., 39, 248–261,
https://doi.org/10.1016/j.ocemod.2011.04.009, 2011. a

Marsan, D., Stern, H. L., Lindsay, R., and Weiss, J.: Scale dependence and
localization of the deformation of Arctic sea ice, Phys. Rev. Lett., 93,
178501, https://doi.org/10.1103/PhysRevLett.93.178501, 2004. a

Nodet, M.: Variational assimilation of Lagrangian data in oceanography, Inverse
problems, 22, 245,
https://doi.org/10.1088/0266-5611/22/1/014, 2006. a

Pain, C., Piggott, M., Goddard, A., Fang, F., Gorman, G., Marshall, D., Eaton,
M., Power, P., and de Oliveira, C.: Three-dimensional unstructured mesh ocean
modelling, Ocean Model., 10, 5–33, https://doi.org/10.1016/j.ocemod.2004.07.005,
2005.
a

Pannekoucke, O., Bocquet, M., and Ménard, R.: Parametric covariance dynamics for the nonlinear diffusive Burgers equation, Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018, 2018. a

Papageorgiou, D. T. and Smyrlis, Y. S.: The route to chaos for the
Kuramoto-Sivashinsky equation, Theor. Computat. Fluid Dynam.,
3, 15–42, 1991. a, b

Partridge, D.: Numerical modelling of glaciers: moving meshes and data
assimilation, PhD thesis, University of Reading, 2013. a

Raanes, P. N., Bocquet, M., and Carrassi, A.: Adaptive covariance inflation in
the ensemble Kalman filter by Gaussian scale mixtures, Q. J. Roy. Meteor. Soc.,
145, 53–75, https://doi.org/10.1002/qj.3386, 2019. a

Rabatel, M., Rampal, P., Carrassi, A., Bertino, L., and Jones, C. K. R. T.: Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic, The Cryosphere, 12, 935–953, https://doi.org/10.5194/tc-12-935-2018, 2018. a

Rampal, P., Weiss, J., Marsan, D., Lindsay, R., and Stern, H.: Scaling
properties of sea ice deformation from buoy dispersion analysis, J.
Geophys. Res.-Oceans, 113, C03002, https://doi.org/10.1029/2007JC004143,
2008. a

Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a, b, c

Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams, T., and Samaké, A.: On the multi-fractal scaling properties of sea ice deformation, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-290, in review, 2019. a

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensemble Kalman
filter: an alternative to ensemble square root filters, Tellus A, 60,
361–371, 2008. a

Saksono, P. H., Dettmer, W. G., and Perić, D.: An adaptive remeshing
strategy for flows with moving boundaries and fluid-structure interaction,
Int. J. Numer. Meth. Eng., 71, 1009–1050,
https://doi.org/10.1002/nme.1971,
2007. a

Slivinski, L., Spiller, E., Apte, A., and Sandstede, B.: A hybrid
particle–ensemble Kalman filter for Lagrangian data assimilation, Mon. Weather Rev., 143, 195–211, 2015. a

Talagrand, O.: Assimilation of Observations, an Introduction (Special Issue –
Data Assimilation in Meteology and Oceanography: Theory and Practice), J.
Meteorol. Soc. Jpn., 75, 191–209, 1997. a

Verlaan, M. and Heemink, A. W.: Nonlinearity in Data Assimilation Applications:
A Practical Method for Analysis, Mon. Weather Rev., 129, 1578–1589,
https://doi.org/10.1175/1520-0493(2001)129<1578:NIDAAA>2.0.CO;2, 2001. a

Weller, H., Ringler, T., Piggott, M., and Wood, N.: Challenges Facing Adaptive
Mesh Modeling of the Atmosphere and Ocean, B. Am.
Meteorol. Soc., 91, 105–108, https://doi.org/10.1175/2009BAMS2907.1,
2010. a