Alberty, J., Carstensen, C., and Funken, S. A.: Remarks around 50 lines of
Matlab: short finite element implementation, Numer. Algorithms, 20, 117–137,
1999. a

Andrieu, C., Doucet, A., and Holenstein, R.: Particle Markov chain Monte
Carlo methods, J. R. Stat. Soc. B, 72, 269–342, 2010. a, b, c, d, e

Annan, J., Hargreaves, J., Edwards, N., and Marsh, R.: Parameter estimation in
an intermediate complexity Earth System Model using an ensemble Kalman
filter, Ocean Model., 8, 135–154, 2005. a

Apte, A., Hairer, M., Stuart, A., and Voss, J.: Sampling the Posterior: An
Approach to Non-Gaussian Data Assimilation, Physica D, 230, 50–64, 2007. a

Bakka, H., Rue, H., Fuglstad, G. A., Riebler, A., Bolin, D., Illian, J., . and Lindgren, F.: Spatial modeling with R‐INLA: A review, Wiley Interdisciplinary Reviews: Computational Statistics, 10, e1443, 2018. a

Branicki, M. and Majda, A. J.: Fundamental limitations of polynomial chaos for
uncertainty quantification in systems with intermittent instabilities, Commun.
Math. Sci., 11, 55–103, 2013. a

Cappé, O., Moulines, E., and Ryden, T.: Inference in Hidden Markov Models
(Springer Series in Statistics), Springer-Verlag, New York, NY, USA, 2005. a

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIRES
Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018. a, b

Chekroun, M. D. and Kondrashov, D.: Data-adaptive harmonic spectra and
multilayer Stuart-Landau models, Chaos, 27, 093110, https://doi.org/10.1063/1.4989400, 2017. a

Chorin, A. J. and Tu, X.: Implicit sampling for particle filters, P. Natl.
Acad. Sci. USA, 106, 17249–17254, 2009. a

Chorin, A. J. and Lu, F.: Discrete approach to stochastic parametrization and
dimension reduction in nonlinear dynamics, P. Natl. Acad. Sci. USA, 112,
9804–9809, 2015. a

Chorin, A. J., Lu, F., Miller, R. M., Morzfeld, M., and Tu, X.: Sampling,
feasibility, and priors in data assimilation, Discrete Contin. Dyn. Syst. A,
36, 4227–4246, 2016. a

Cowles, M. K. and Carlin, B. P.: Markov chain Monte Carlo convergence
diagnostics: a comparative review, J. Am. Stat. Assoc., 91, 883–904, 1996. a

Cui, T., Marzouk, Y. M., and Willcox, K. E.: Data-driven model reduction for
the Bayesian solution of inverse problems, Int. J. Numer. Methods Fluids,
102, 966–990, 2015. a

Doucet, A. and Johansen, A. M.: A tutorial on particle filtering and smoothing:
fifteen years later, in: Oxford Handbook of Nonlinear Filtering,
656–704, 2011. a, b, c

Fang, M. and Li, X.: Paleoclimate Data Assimilation: Its Motivation,
Progress and Prospects, Sci. China Earth Sci., 59, 1817–1826,
https://doi.org/10.1007/s11430-015-5432-6, 2016. a

Fanning, A. F. and Weaver, A. J.: An atmospheric energy-moisture balance model:
Climatology, interpentadal climate change, and coupling to an ocean general
circulation model, J. Geophys. Res.-Atmos., 101, 15111–15128, 1996. a, b, c

Farchi, A. and Bocquet, M.: Review article: Comparison of local particle filters and new implementations, Nonlin. Processes Geophys., 25, 765–807, https://doi.org/10.5194/npg-25-765-2018, 2018. a

Ghosal, S. and Van der Vaart, A.: Fundamentals of nonparametric Bayesian
inference, vol. 44, Cambridge University Press, 2017. a, b

Goosse, H., Crespin, E., de Montety, A., Mann, M. E., Renssen, H., and
Timmermann, A.: Reconstructing Surface Temperature Changes over the Past 600
Years Using Climate Model Simulations with Data Assimilation, J. Geophys.
Res., 115, https://doi.org/10.1029/2009JD012737, 2010. a

Guillot, D., Rajaratnam, B., and Emile-Geay, J.: Statistical Paleoclimate
Reconstructions via Markov Random Fields, Ann. Appl. Stat., 9, 324–352,
2015. a

Hairer, M., Stuart, A. M., and Voss, J.: Analysis of SPDEs Arising in Path
Sampling Part II: The Nonlinear Case, Ann. Appl.
Probab., 17, 1657–1706, https://doi.org/10.1214/07-AAP441, 2007. a

Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M., Wilson, S. P.,
Allen, J., Huntley, B., and Mitchell, F.: Bayesian palaeoclimate
reconstruction, J. R. Stat. Soc. A, 169, 395–438, 2006. a

Jiang, S. W. and Harlim, J.: Parameter estimation with data-driven
nonparametric likelihood functions, arXiv preprint arXiv:1804.03272, 2018. a

Kantas, N., Doucet, A., Singh, S. S., and Maciejowski, J. M.: An Overview of
Sequential Monte Carlo Methods for Parameter Estimation in General
State-Space Models, Proceedings of the IFAC Symposium on System
Identification (SYSID), Saint-Malo, France, 2009. a, b

Khouider, B., Majda, A. J., and Katsoulakis, M. A.: Coarse-grained stochastic
models for tropical convection and climate, P. Natl. Acad. Sci. USA,
100, 11941–11946, 2003. a

Law, K., Stuart, A., and Zygalakis, K.: Data Assimilation: A Mathematical
Introduction, Springer, 2015. a, b

Lindgren, F. and Rue, H.: Bayesian Spatial Modelling with R-INLA, J. Stat.
Softw., 63, 1–25, 2015. a

Lindgren, F., Rue, H., and Lindström, J.: An Explicit Link between
Gaussian Fields and Gaussian Markov Random Fields: The Stochastic
Partial Differential Equation Approach: Link between Gaussian Fields
and Gaussian Markov Random Fields, J. R. Stat. Soc. B, 73,
423–498, 2011. a, b, c, d, e

Lindsten, F., Jordan, M. I., and Schön, T. B.: Particle Gibbs with ancestor
sampling, J. Mach. Learn. Res., 15, 2145–2184, 2014. a, b, c, d

Liu, J.: Monte Carlo Strategies in Scientific Computing, Springer, 2001. a

Llopis, F. P., Kantas, N., Beskos, A., and Jasra, A.: Particle Filtering
for Stochastic Navier–Stokes Signal Observed with Linear Additive
Noise, SIAM J. Sci. Comput., 40, A1544–A1565, 2018. a

Lu, F., Morzfeld, M., Tu, X., and Chorin, A. J.: Limitations of polynomial
chaos expansions in the Bayesian solution of inverse problems, J. Comput.
Phys., 282, 138–147, 2015. a

Lu, F., Tu, X., and Chorin, A. J.: Accounting for Model Error from Unresolved
Scales in Ensemble Kalman Filters by Stochastic Parameterization, Mon. Weather
Rev., 145, 3709–3723, 2017. a

Marzouk, Y. M. and Najm, H. N.: Dimensionality reduction and polynomial chaos
acceleration of Bayesian inference in inverse problems, J. Comput. Phys.,
228, 1862–1902, 2009. a

Maslowski, B. and Tudor, C. A.: Drift Parameter Estimation for
Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process,
B. Sci. Math., 137, 880–901, 2013. a

Morzfeld, M., Tu, X., Atkins, E., and Chorin, A. J.: A random map
implementation of implicit filters, J. Comput. Phys., 231, 2049–2066, 2012. a

Müller, P. and Mitra, R.: Bayesian nonparametric inference–why and how,
Bayesian analysis, 8, 2013. a, b

O'Leary, D. P.: Near-Optimal Parameters for Tikhonov and Other
Regularization Methods, SIAM J. Sci. Comput., 23, 1161–1171, 2001. a

Parnell, A. C., Haslett, J., Sweeney, J., Doan, T. K., Allen, J. R., and
Huntley, B.: Joint palaeoclimate reconstruction from pollen data via forward
models and climate histories, Quaternary Sci. Rev., 151, 111–126,
2016. a

Penny, S. G. and Miyoshi, T.: A local particle filter for high-dimensional geophysical systems, Nonlin. Processes Geophys., 23, 391–405, https://doi.org/10.5194/npg-23-391-2016, 2016. a

Poterjoy, J.: A Localized Particle Filter for High-Dimensional
Nonlinear Systems, Mon. Weather Rev., 144, 59–76, 2016. a

Prakasa Rao, B. L. S.: Statistical Inference for Stochastic Partial
Differential Equations, in: Institute of Mathematical Statistics Lecture
Notes – Monograph Series, Institute of Mathematical
Statistics, Beachwood, OH, 47–70, 2001. a

Rypdal, K., Rypdal, M., and Fredriksen, H.-B.: Spatiotemporal Long-Range
Persistence in Earth's Temperature Field: Analysis of Stochastic-Diffusive
Energy Balance Models, J. Climate, 28, 8379–8395, 2015. a

Sigrist, F., Künsch, H. R., and Stahel, W. A.: Stochastic Partial
Differential Equation Based Modelling of Large Space-Time Data Sets, J. R.
Stat. Soc. B, 77, 3–33, 2015. a

Snyder, C. W.: Evolution of global temperature over the past two million years,
Nature, 538, 226–228, 2016. a

Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., and Roe, G. H.:
Assimilation of Time-Averaged Pseudoproxies for Climate
Reconstruction, J. Climate, 27, 426–441, 2014. a

Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing
Climate Anomalies in Space and Time. Part I: Development
and Applications to Paleoclimate Reconstruction Problems, J. Climate,
23, 2759–2781, 2010. a

Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and
Rajaratnam, B.: Piecing together the past: statistical insights into
paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22, 2012. a

Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An
efficient forward model of the climate controls on interannual variation in
tree-ring width, Clim. Dynam., 36, 2419–2439, 2011. a

Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy
Budget, B. Am. Meteorol. Soc., 90, 311–324, 2009. a, b

Van der Vaart, A. W.: Asymptotic statistics, vol. 3, Cambridge university
press, 2000. a

Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf,
M. U., Brasseur, P., Kirchgessner, P., and Beckers, J.-M.: State-of-the-Art
Stochastic Data Assimilation Methods for High-Dimensional Non-Gaussian
Problems, Tellus A, 70, 1–43, 2018. a, b

Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L.,
Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The
UVic Earth System Climate Model: Model description, climatology, and
applications to past, present and future climates, Atmos. Ocean., 39,
361–428, 2001. a

Werner, J. P., Luterbacher, J., and Smerdon, J. E.: A Pseudoproxy Evaluation of
Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate
Field Reconstructions over Europe, J. Climate, 26, 851–867, 2013. a

Whittle, P.: On stationary processes in the plane, Biometrika, 41, 434–449,
1954. a

Whittle, P.: Stochastic processes in several dimensions, B. Int. Statist.
Inst., 40, 974–994, 1963. a