Abe, S. and Suzuki, N.: Scale-free network of earthquakes, Europhys. Lett.,
65, 581–586, https://doi.org/10.1209/epl/i2003-10108-1, 2004.

Baiesi, M. and Paczuski, M.: Scale-free networks of earthquakes and
aftershocks, Phys. Rev. E, 69, 066106, https://doi.org/10.1103/PhysRevE.69.066106, 2004.

Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified scaling law
for earthquakes, Phys. Rev. Lett., 88, 178501, https://doi.org/10.1103/PhysRevLett.88.178501, 2002.

Białecki, M. and Czechowski, Z.: On a simple stochastic cellular automaton
with avalanches: Simulation and analytical results, in: Synchronization and
triggering: From fracture to earthquake processes, chap. 5, edited by: De
Rubeis, V., Czechowski, Z., and Teisseyre, R., Springer, 63–75, 2010.

Bowman, D. D. and Sammis, C. G.: Intermittent criticality and the
Gutenberg-Richter distribution, Pure Appl. Geophys., 161, 1945–1956,
https://doi.org/10.1007/s00024-004-2541-z, 2004.

Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D.:
An observational test of the critical earthquake concept, J. Geophys. Res.,
103, 24359–24372, 1998.

Chelidze, T. and Matcharashvili, T.: Complexity of seismic process:
Measuring and applications, A review, Tectonophysics, 431, 49–60, 2007.

Christensen, K., Danon, L., Scanlon, T., and Bak, P.: Unified scaling law
for earthquakes, P. Natl. Acad. Sci. USA, 99, 2509–2513, 2002.

Corral, A.: Long-term clustering, scaling, and universality in the temporal
occurrence of earthquakes, Phys. Rev. Lett., 92, 108501, https://doi.org/10.1103/PhysRevLett.92.108501, 2004.

Corral, A.: Scaling and universality in the dynamics of seismic occurrence
and beyond, in: Acoustic emission and critical phenomena, edited by:
Carpinteri and Lacidogna, Taylor and Francis Group, London, 225–244, ISBN
978-0-415-45082-9, 2008.

Czechowski, Z.: A kinetic model of crack fusion, Geophys, J. Int., 104,
419–422, 1991.

Czechowski, Z.: A kinetic model of nucleation, propagation and fusion of
cracks, J. Phys. Earth, 41, 127–137, 1993.

Czechowski, Z.: Dynamics of fracturing and cracks, in: Theory of earthquake
premonitory and fracture processes, edited by: Teisseyre, R., PWN, Warszawa,
447–469, 1995.

Czechowski, Z.: Transformation of random distributions into power-like
distributions due to non-linearities: application to geophysical phenomena,
Geophys. J. Int., 144, 197–205, 2001.

Czechowski, Z.: The privilege as the cause of the power distributions in
geophysics, Geophys. J. Int., 154, 754–766, 2003.

Davidsen, J. and Goltz, C.: Are seismic waiting time distributions
universal?, Geophys. Res. Lett., 31, L21612, https://doi.org/10.1029/2004GL020892, 2004.

Di Toro, G., Goldsby, D. L., and Tullis, T. E.: Friction falls towards zero
in quartz rock as slip velocity approaches seismic rates, Nature, 427,
436–439, 2004.

Godano, C.: A new expression for the earthquake interevent time
distribution, Geophys. J. Int., 202, 219–223, https://doi.org/10.1093/gji/ggv135, 2015.

Godano, C. and Tramelli, A.: How long is an aftershock sequence?, Pure Appl.
Geophys., 173, 2295–2304, https://doi.org/10.1007/s00024-016-1276-1, 2016.

Goltz, C. (Ed.): Fractal and chaotic properties of earthquakes, in: Lecture
notes in earth sciences, Springer, Berlin, 1998.

Helmstetter, A.: Is earthquake triggering driven by small earthquakes?, Phys.
Rev. Lett., 91, 058501, https://doi.org/10.1103/PhysRevLett.91.058501, 2003.

Helmstetter, A. and Sornette, D.: Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models, Phys. Rev. E, 66, 061104, https://doi.org/10.1103/PhysRevE.66.061104, 2002.

Hilborn, R. C. (Ed.): Chaos and nonlinear dynamics: An introduction for
scientists and engineers, Oxford University Press, New York, Oxford, 1994.

Hough, S. E. and Jones, L. M.: Aftershocks: Are they earthquakes or
afterthoughts?, EOS Trans. Am. Geophys. Union, 78, 505–508, 1997.

Iliopoulos, A. C., Pavlos, G. P., Papadimitriou, E. E., Sfiris, D. S.,
Athanasiou, M. A., and Tsoutsouras, V. G.: Chaos, self-organized
criticality, intermittent turbulence and non-extensivity revealed from
seismogenesis in north Aegean area, Int. J. Bifurcat. Chaos, 22,
1250224, https://doi.org/10.1142/S0218127412502240, 2012.

Kanamori, H.: The energy release in great earthquakes, J. Geophys. Res., 82,
2981–2987, 1977.

Kantz, H. and Schreiber, T. (Eds.): Nonlinear time series analysis,
Cambridge University Press, 1998.

Kossobokov, V. G. and Nekrasova, A. K.: Characterizing aftershock sequences
of the recent strong earthquakes in Central Italy, Pure Appl. Geophys., 174,
3713–3723, 2017.

Kumar, S., Vichare, N. M., Dolev, E., and Pecht, M.: A health indicator
method for degradation detection of electronic products, Microelectron.
Reliab., 52, 439–445, 2012.

Lattin, J. M., Carroll, J. D., and Green, P. E. (Eds.): Analyzing
multivariate data, Thomson Brooks/Cole, Pacific Grove, CA, 2003.

Lombardi, A. M. and Marzocchi, W.: Evidence of clustering and
nonstationarity in the time distribution of large worldwide earthquakes, J.
Geophys. Res., 112, B02303, https://doi.org/10.1029/2006JB004568, 2007.

Mahalanobis, P. C.: On tests and measures of group divergence, J. Asiat.
Soci. Bengal, 26, 541–588, 1930.

Matcharashvili, T., Chelidze, T., and Javakhishvili, Z.: Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of the Caucasian region, Nonlin. Processes Geophys., 7, 9–20, https://doi.org/10.5194/npg-7-9-2000, 2000.

Matcharashvili, T., Chelidze, T., Javakhishvili, Z., and Ghlonti, E.:
Detecting differences in dynamics of small earthquakes temporal distribution
before and after large events, Comput. Geosci., 28, 693–700, 2002.

Matcharashvili, T., Zhukova, N., Chelidze, T., Founda, D., and Gerasopoulos,
E.: Analysis of long-term variation of the annual number of warmer and
colder days using Mahalanobis distance metrics – A case study for Athens,
Physica A, 487, 22–31, 2017.

Matcharashvili, T., Hatano, T., Chelidze, T., and Zhukova, N.: Simple statistics for complex Earthquake time distributions, Nonlin. Processes Geophys., 25, 497–510, https://doi.org/10.5194/npg-25-497-2018, 2018.

McLachlan, G. J. (Ed.): Discriminant analysis and statistical pattern
recognition, New York, Wiley, 1992.

McLachlan, G. J.: Mahalanobis distance, Resonance, 6, 20–26, 1999.

Nakamichi, H., Iguchi, M., Triastuty, H., Hendrasto, M., and Mulyana, Y.:
Differences of precursory seismic energy release for the 2007 effusive
dome-forming and 2014 Plinian eruptions at Kelud volcano, Indonesia, J.
Volcanol. Geoth. Res.,
https://doi.org/10.1016/j.jvolgeores.2017.08.004, in press, 2018.

Pasten, D., Czechowski, Z., and Toledo, B.: Time series analysis in
earthquake complex networks, Chaos, 28, 083128, https://doi.org/10.1063/1.5023923, 2018.

Rundle, J. B., Turcotte, D. L., and Klein, W. (Eds.): GeoComplexity and the
physics of earthquakes, AGU Monograph 120, American Geophysical Union,
Washington, DC, 2000.

Sornette, D. and Knopoff, L.: The paradox of the expected time until the
next earthquake, B. Seismol. Soc. Am., 87, 789–798, 1997.

Sornette, D. and Sammis, C. G.: Complex critical exponents from
renormalization group theory of earthquakes: Implications for earthquake
predictions, J. Phys. I, 5, 607–619, 1995.

Taguchi, G. and Jugulum, R.: The Mahalanobis-Taguchi strategy: A pattern
technology system, John Wiley and Sons, Inc., 2002.

Touati, S., Naylor, M., and Main, I. G.: Origin and nonuniversality of the
earthquake interevent time distribution, Phys. Rev. Lett., 102, 168501,
https://doi.org/10.1103/PhysRevLett.102.168501, 2009.

Wang, J.-H. and Kuo, C.-H.: On the frequency distribution of
inter-occurrence times of earthquakes, J. Seismol., 2, 351, https://doi.org/10.1023/A:1009774819512, 1998.