Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
NPG | Articles | Volume 26, issue 3
Nonlin. Processes Geophys., 26, 325–338, 2019
https://doi.org/10.5194/npg-26-325-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nonlin. Processes Geophys., 26, 325–338, 2019
https://doi.org/10.5194/npg-26-325-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Sep 2019

Research article | 17 Sep 2019

Revising the stochastic iterative ensemble smoother

Patrick Nima Raanes et al.
Related subject area  
Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Generalization properties of feed-forward neural networks trained on Lorenz systems
Sebastian Scher and Gabriele Messori
Nonlin. Processes Geophys., 26, 381–399, https://doi.org/10.5194/npg-26-381-2019,https://doi.org/10.5194/npg-26-381-2019, 2019
Short summary
Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019,https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model
Keiichi Kondo and Takemasa Miyoshi
Nonlin. Processes Geophys., 26, 211–225, https://doi.org/10.5194/npg-26-211-2019,https://doi.org/10.5194/npg-26-211-2019, 2019
Short summary
Fluctuations of finite-time Lyapunov exponents in an intermediate-complexity atmospheric model: a multivariate and large-deviation perspective
Frank Kwasniok
Nonlin. Processes Geophys., 26, 195–209, https://doi.org/10.5194/npg-26-195-2019,https://doi.org/10.5194/npg-26-195-2019, 2019
Short summary
Data assimilation using adaptive, non-conservative, moving mesh models
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019,https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Cited articles  
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, 2016. a, b
Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.: Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014. a
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, 2016. a
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504, https://doi.org/10.1080/16000870.2017.1304504, 2017. a
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012, 2012. a, b, c
Publications Copernicus
Download
Short summary
A popular variational ensemble smoother for data assimilation and history matching is simplified. An exact relationship between ensemble linearizations (linear regression) and adjoints (analytic derivatives) is established.
A popular variational ensemble smoother for data assimilation and history matching is...
Citation