Articles | Volume 27, issue 1
https://doi.org/10.5194/npg-27-35-2020
https://doi.org/10.5194/npg-27-35-2020
Research article
 | 
06 Feb 2020
Research article |  | 06 Feb 2020

Order of operation for multi-stage post-processing of ensemble wind forecast trajectories

Nina Schuhen

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47, https://doi.org/10.5194/npg-30-37-2023,https://doi.org/10.5194/npg-30-37-2023, 2023
Short summary
Applying prior correlations for ensemble-based spatial localization
Chu-Chun Chang and Eugenia Kalnay
Nonlin. Processes Geophys., 29, 317–327, https://doi.org/10.5194/npg-29-317-2022,https://doi.org/10.5194/npg-29-317-2022, 2022
Short summary
A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253, https://doi.org/10.5194/npg-29-241-2022,https://doi.org/10.5194/npg-29-241-2022, 2022
Short summary
Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022,https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Inferring the instability of a dynamical system from the skill of data assimilation exercises
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021,https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary

Cited articles

Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:amfpae>2.0.co;2, 1996. a
Barnes, C., Brierley, C. M., and Chandler, R. E.: New approaches to postprocessing of multi-model ensemble forecasts, Q. J. Roy. Meteor. Soc., 145, 3479–3498, https://doi.org/10.1002/qj.3632, 2019. a
Ben Bouallègue, Z., Heppelmann, T., Theis, S. E., and Pinson, P.: Generation of scenarios from calibrated ensemble forecasts with a dual-ensemble copula-coupling approach, Mon. Weather Rev., 144, 4737–4750, https://doi.org/10.1175/mwr-d-15-0403.1, 2016. a
Bröcker, J.: Evaluating raw ensembles with the continuous ranked probabilty score, Q. J. Roy. Meteor. Soc., 138, 1611–1617, https://doi.org/10.1002/qj.1891, 2012. a
Buizza, R.: Ensemble forecasting and the need for calibration, in: Statistical postprocessing of ensemble forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., chap. 2, 15–48, Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-812372-0.00002-9, 2018. a
Download
Short summary
We present a new way to adaptively improve weather forecasts by incorporating last-minute observation information. The recently measured error, together with a statistical model, gives us an indication of the expected future error of wind speed forecasts, which are then adjusted accordingly. This new technique can be especially beneficial for customers in the wind energy industry, where it is important to have reliable short-term forecasts, as well as providers of extreme weather warnings.