Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 4, issue 3
Nonlin. Processes Geophys., 4, 185–199, 1997
https://doi.org/10.5194/npg-4-185-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Nonlin. Processes Geophys., 4, 185–199, 1997
https://doi.org/10.5194/npg-4-185-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Sep 1997

30 Sep 1997

Structure function measurements of the intermittent MHD turbulent cascade

T. S. Horbury and A. Balogh T. S. Horbury and A. Balogh
  • The Blackett Laboratory, Imperial College, London, U.K.

Abstract. The intertmittent nature of turbulence within solar wind plasma has been demonstrated by several studies of spacecraft data. Using magnetic field data taken in high speed flows at high heliographic latitudes by the Ulysses probe, the character of fluctuations within the inertia] range is discussed. Structure functions are used extensively. A simple consideration of errors associated with calculations of high moment structure functions is shown to be useful as a practical estimate of the reliability of such calculations. For data sets of around 300 000 points, structure functions of moments above 5 are rarely reliable on the basis of this test, highlighting the importance of considering uncertainties in such calculations. When unreliable results are excluded, it is shown that inertial range polar fluctuations are well described by a multifractal model of turbulent energy transfer. Detailed consideration of the scaling of high order structure functions suggests energy transfer consistent with a "Kolmogorov" cascade.

Publications Copernicus
Download
Citation