Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 6, issue 3/4
Nonlin. Processes Geophys., 6, 179-186, 1999
https://doi.org/10.5194/npg-6-179-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Nonlinear Waves and Chaos

Nonlin. Processes Geophys., 6, 179-186, 1999
https://doi.org/10.5194/npg-6-179-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 1999

31 Dec 1999

Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analyses

H. Kojima1, Y. Omura1, H. Matsumoto1, K. Miyaguti1, and T. Mukai2 H. Kojima et al.
  • 1Radio Atmospheric Science Center, Kyoto University, Kyoto, Japan
  • 2Institute of Space and Astronautical Science, Kanagawa, Japan

Abstract. We present the characteristics of the Electrostatic Solitary Waves (ESW) observed by the Geotail spacecraft in the plasma sheet boundary layer based on the statistical analyses. We also discuss the results referring to a model of ESW generation due to electron beams, which is proposed by computer simulations. In this generation model, the nonlinear evolution of Langmuir waves excited by electron bump-on-tail instabilities leads to formation of isolated electrostatic potential structures corresponding to "electron hole" in the phase space. The statistical analyses of the Geotail data, which we conducted under the assumption that polarity of ESW potentials is positive, show that most of ESW propagate in the same direction of electron beams, which are observed by the plasma instrument, simultaneously. Further, we also find that the ESW potential energy is much smaller than the background electron thermal energy and that the ESW potential widths are typically shorter than 60 times of local electron Debye length when we assume that the ESW potentials travel in the same velocity of electron beams. These results are very consistent with the ESW generation model that the nonlinear evolution of electron bump-on-tail instability leads to the formation of electron holes in the phase space.

Publications Copernicus
Special issue
Download
Citation
Share