Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.699 IF 1.699
  • IF 5-year value: 1.559 IF 5-year
    1.559
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.884 SNIP 0.884
  • IPP value: 1.49 IPP 1.49
  • SJR value: 0.648 SJR 0.648
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 52 Scimago H
    index 52
  • h5-index value: 21 h5-index 21
Volume 6, issue 3/4
Nonlin. Processes Geophys., 6, 235-242, 1999
https://doi.org/10.5194/npg-6-235-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Nonlinear Waves and Chaos

Nonlin. Processes Geophys., 6, 235-242, 1999
https://doi.org/10.5194/npg-6-235-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 1999

31 Dec 1999

Energetic particle cross-field diffusion: Interaction with Magnetic Decreases (MDs)

B. T. Tsurutani1, G. S. Lakhina2, D. Winterhalter1, J. K. Arballo1, C. Galvan1, and R. Sukurai1 B. T. Tsurutani et al.
  • 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
  • 2Indian Institute of Geomagnetism, Colaba, Mumbai/Bamobay, India

Abstract. Magnetic field Decreases (MDs) are detected in the heliospheric polar regions. The MDs have minimum spatial scales sizes of 25 proton thermal gyroradii, and are typically bounded by tangential or rotational discontinuities. The distribution of the magnitudes of the decreases within AIDs is a continuum, with the smallest decreases being most frequent in occurrence. The largest decreases can be 80% of the ambient field. The thickness distribution is also a continuum, and is shown to be independent of the field magnitude decrease. Charged particle interactions with the MDs lead to particle guiding center displacements and hence particle cross-held diffusion. We develop a diffusion model to apply to energetic ion interactions with MDs using the MD properties described in this paper. One specific day of data is used to illustrate that the particle cross-field diffusion will be extremely rapid due to such interactions.

Publications Copernicus
Special issue
Download
Citation
Share